SELF-ADHERED MEMBRANES
The roof industry potentially has another “phenolic foam” situation on its hands. Unlike the phenolic challenge from the 1980s and 1990s, today’s damage involves a different insulation corroding metal decks within a few years of original construction. For the corrosion to occur, leaks do not need to be present. The dynamics have been known for over 13 years in non-roof-related industries. Through the process of managing a client’s assets in Southeast Florida, we found ourselves researching and uncovering a potentially devastating condition.

Bruce Byrne, senior roof consultant for Roof Solutions Incorporated (RSI), was performing routine inspections last year on a group of buildings ranging in age from six to eight years old. The metal decking on one building in the portfolio was severely corroded. A similar building in the same area had been inspected for a New York client in 2007 during a due diligence survey prior to procurement. This building required a roof replacement due to the deck’s deteriorated condition. A third building has since been identified with the same construction and deck condition.

We now have experience with three buildings—all well under ten years of age—with severely corroded metal decks. Portions of these decks were completely rusted through. These three buildings were constructed within a couple of years of one another using the same construction materials: a mechanically attached TPO single-ply directly over 1 inch of wood fiber insulation. In warm states such as Florida, Texas, and California, this inexpensive construction is used in large warehouses not equipped with air conditioning.

It is our opinion that this information needs to be released industrywide. We have...
heard one industry associate note this condition, but no connection was made. We hope this information helps others in assisting clients. At this time, we are releasing selected portions of the report generated from our research and findings. The manufacturer’s name is omitted due to the warranty and legal status. The following is otherwise directly from our report:

FINDINGS IN SUMMARY
The corrosion of the metal decking has been found to be associated with the leaching of the element chlorine from [manufacturer withheld] wood fiber insulation that was originally installed in the roof system when these buildings were erected.

SUPPORTING RESEARCH AND FINDINGS
RSI used a recognized metallurgical testing laboratory to analyze the TPO membrane, insulation, and metal deck. The laboratory originally theorized that the chlorine was introduced into the roof assembly by an outside source. Possible contamination was originally suspected to have occurred during the cleaning of the top surface of the roof.

Photo 2 — Note the burned-looking insulation at this severely deteriorated location. This was common on all significantly compromised deck areas, including those replaced to address fall-through potential. This is typical of what was sent in originally for testing and showed lower levels of chlorine on all components.

Photo 3 — The severely compromised locations are small but numerous and randomly dispersed. The roof area encompassed between 5% to no more than 10% of the deck area. The two buildings addressed were only six and eight years old. The deterioration is stunning and created a very real safety issue. We suspect deck failure will accelerate exponentially.

Photo 4 — The fasteners and plates were severely attacked.
membrane, perhaps using a chlorine-based product. RSI researched this theory but could find no evidence that any such cleaning process was ever conducted by owners, tenants, the original builder, or the roofing contractors (either the original installer or maintenance contractor).

Environmental and manufacturing sources of chlorine within the building and in the surrounding geographical areas were scrutinized by RSI. Our research team could find no manufacturing sources within the building, nor could we find any in the geographical area that could have contributed to these levels of chlorine being found. No other environmental sources that might have contributed to chlorine levels were discovered.

As a result, additional roof samples were sent in for further testing. These samples were not as deteriorated as the original samples.

- The energy-dispersive spectroscopy (EDS) tests found chlorine contamination in the new samples. Instead of the chlorine's being found on every component tested, it was pri-
bagasse was stockpiled unprotected in open fields near a plant, and when it was needed for production purposes, it was moved onto conveyor belts to transport the raw material into the factory for subsequent production (see Photo 1).

In RSI’s subsequent investigation, we became aware that liquid chlorine was applied to the bagasse during its storage to kill the microbial growth resulting from the rapid development of mold in the sugarcane from high levels of sugar, water, and heat in the bagasse. The molding phenomenon in bagasse is rampant and can lead to an interstitial lung disease called bagassosis.

Cane-based fiberboard has been used extensively in various Department of Energy (DOE) packages as a thermal insulator and impact absorber. Cane-based fiberboard was manufactured in only one plant located in Louisiana. However, this fiberboard plant shut down in early 2007 due to the impact of Hurricane Katrina and other economic factors. Therefore, cane-based fiberboard is no longer available for use in the manufacture of new shipping packaging.

Current consolidation plans by the Department of Energy entail the procurement of several thousand new Model 9975 shipping packages. Therefore, an alternative to cane-based fiberboard is needed. The manufacturer in question currently produces fiberboard from other cellulosic materials, such as hardwood and softwood.

CONCLUSION AND DISCUSSION

The above extract from RSI’s report addresses only one situation. We now understand the source of the corrosion. The catalyst leading to the deck corrosion was not as clear. With phenolic insulation, water was required to produce corrosion. Phenolic insulation was typically used to obtain high thermal resistance values in climate-controlled buildings. Water entering through roof leaks was required for the phenolic insulation to start corroding the decks.

In the case presented here, the deck was corroded where leaks occurred, but the catalyst could not exclusively be roof membrane leaks. The three relatively new buildings identified to date were not chronic leakers. RSI found the deteriorated deck conditions to be widespread and often located away from any roof leaks. In addition to specific assembly components, the buildings had another thing in common: they were not air-conditioned. The air was often

A quick synopsis of the use of bagasse follows. After the stalks of the sugarcane are crushed to extract their juice (for the production of sugar products), an organic fibrous residue, bagasse, remains. Bagasse was transported (truckled) from the various sugar cane refineries to plants for production into wood fiber insulation boards. The bagasse was stockpiled unprotected in open

Enhanced Performance Roof Hatches

for Green Building Applications

- Energy efficiency exceeds standard hatches by more than 48%
- Meets LEED® standards for recycled content
- High solar reflective index (SRI)
- Ozone-friendly polyisocyanurate insulation
- EPDM gasketing with enhanced weather-resistance

Our Most Energy-Efficient Model Yet!

Available in a number of standard sizes

LEED is a registered trademark of the U.S. Green Building Council

For more information call 800-366-6530 or log on to www.bilco.com
hot and humid. It is logical to assume convection would allow the wood fiber to be exposed to continual moisture. It is our opinion that leaks or continual exposure to high levels of humidity will provide the catalyst for corrosion.

What is not known is the effect, if any, when this wood fiber is used as a cover board even in climate-controlled buildings. Will continuously high humidity be enough to allow the chlorine to reach the deck? This wood fiber was also a popular re-cover board. We believe that roof leaks will prove to be a strong enough catalyst in future years to promote deck deterioration. This, of course, is not proven and is one reason we have chosen to release this information to RCI, Inc. Other constructions using this material need to be evaluated as the years pass and leaks develop.

RECOMMENDATION AND CAUTION

We encourage all firms to identify, where possible, the use of sugarcane-based wood fiber insulation in past designs or in the assets they manage. Although roof performance is an issue, the main emphasis here is safety. In one of our three buildings, a dozen areas required immediate replacement due to the potential for falling through the roof. One of the three buildings had its deck painted in recent years, making corrosion difficult to identify from below. We suggest RCI, Inc. consider acting as a central clearinghouse for future reporting and data accumulation.

REFERENCES

Chuck Marvin

Chuck Marvin is a Registered Roof Consultant who founded Roof Solutions Incorporated in 1994 to represent owners in an unbiased manner. From 1986 to 1990, he worked for Tremco, learning the manufacturing side of the business; and from 1990 to 1994, for Simon Roofing, learning the contracting side. Marvin’s work has been published in several journals, and in 1998, he won the Horowitz Award for excellence in writing from RCI, Inc. for his contribution to Interface.

NCCER Breaks Ground on Its New Headquarters

The National Center for Construction Education and Research (NCCER) broke ground on November 22, 2010, for its future home at 13614 Progress Boulevard in Progress Corporate Park, Alachua, FL. NCCER plans to move into the new building in the fall of 2011. The 31,000-sq-ft building will be designed to LEED silver certification.

The building will serve as an educational facility with cutouts that showcase to staff and visitors the skilled work of craft professionals. Also included in the building will be the national headquarters for ProV™, NCCER’s testing and assessment development partner, and a generous conference space, which will allow for a variety of training courses to be offered. NCCER is a not-for-profit 501 (c)(3) education foundation and an affiliate of the University of Florida. It was created to develop standardized curriculum and assessments with portable credentials and to help address the skilled construction workforce shortage. For more information, visit www.nccer.org or contact NCCER customer service at 888.622.3720.

Bruce Byrne

Bruce Byrne has been involved in the roofing and waterproofing industry since 1978 and worked in the technical services department of several nationally known manufacturers. He has also served as an expert witness in a number of litigation cases and is an associate member of the Building Officials Association of Florida (BOAF). Bruce has a state-of-Florida certified roofing contractor’s license and has worked as a senior consultant for Roof Solutions for the past decade.

“Leaching of Chlorine From Celotex Packaging in Stainless Steel Containers Storing Plutonium Pits,” 2000, Nuclear Engineering Teaching Lab, UT, TX.

“Preliminary Investigation Into the Corrosion of Beryllium Exposed to Celotex and Water,” 1997, MST-6, Los Alamos National Laboratory, Los Alamos, NM.